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1

The local cohomology functors

The main objective of this chapter is to introduce the a-torsion functor I’y
(throughout the book, a always denotes an ideal in a (non-trivial) commutative
Noetherian ring R) and its right derived functors H. (i > 0), referred to as the
local cohomology functors with respect to a. We shall see that I’y is naturally
equivalent to the functor h_r»nHomMR/ a”, .) and, indeed, that H! is naturally

neN
equivalent to the functor lim Exty(R/a", .) for each i > 0; moreover, as I'y

nelN
turns out to be left exact, the functors I', and H? are naturally equivalent.

This chapter also serves notice that our approach is based on fundamental
techniques of homological commutative algebra, such as ones based on con-
nected sequences of functors (see [52, pp. 212-214]): readers familiar with such
ideas, and with the local cohomology functors, might like to just glance through
this chapter and to move rapidly on to Chapter 2.

1.1 Torsion functors

1.1.1 Definition. For each R-module M, set I's(M) = |J,n(0 :m a”), the set of
elements of M which are annihilated by some power of a. Note that I',(M) is
a submodule of M. For a homomorphism f : M — N of R-modules, we have
f(To(M)) < T'4(N), and so there is a mapping ['4(f) : T'o(M) — T'y(N) which
agrees with f on each element of I'q(M).

It is clear that, if g : M — N and h : N — L are further homomorphisms of
R-modules and r € R, then Tg(ho f) =Ty(h) o Ta(f), To(f +2) = La(f) +Ta(g),
Io(rf) = rTo(f) and To(Idy) = Idran. Thus, with these assignments, I’
becomes a covariant, R-linear functor from #(R) to itself. (We say that a functor
T : 4(R) — %(R) is R-linear precisely when it is additive and T(rf) =rT(f)

1



2 1 The local cohomology functors
for all » € R and all homomorphisms f of R-modules.) We call I', the a-torsion
functor.
1.1.2 #Exercise. Let b be a second ideal of R. Show that
Fo(Ts(M)) = I'ats(M)
for each R-module M.

1.1.3 #Exercise. Let b be a second ideal of R. Show that I'y = I', if and only if
Ja= b

{The notation #, attached to some exercises, is explained in the section of
‘Notation and conventions’ following the Preface.)

1.1.4 Exercise. Suppose that the ideal b of R is a reduction of qa, that is, b = a
and there exists s € N such that ba® = a*t!. Show that T, = I'}.

1.1.5 Exercise. For a prime number p, find I',z(Q/Z).

1.1.6 Lemma. The a-torsion functor I'y : €(R) — %(R) is left exact.

Proof. Let 0 — L N M -£5 N — 0 be an exact sequence of R-modules
and R-homomorphisms. We must show that

Ta(f) Tolg)

0 ra(L) —_— ra(M)

To(N)

is still exact. It is clear that I'(f) is a monomorphism and it follows immediately
from 1.1.1 that I'y(g) o I's(f) = 0, so that

Im(T'(f)) < Ker(T'a(g))-

To prove the reverse inclusion, let m € Ker(I'y(g)). Thus m € I'y(M), so that
there exists n € IN such that a"m = 0, and g(m) = 0. Now there exists [ € L
such that f(I) = m, and our proof will be complete if we show that [ € T'y(L).
To achieve this, note that, for each r € o, we have f(rl) =rf(l) =rm =0, so
that I = 0 because f is a monomorphism. Hence "l = 0. O

The result of Lemma 1.1.6 will become transparent to many readers once
we have covered a little more theory, and related the a-torsion functor I'; to
a functor defined in terms of direct limits of ‘Hom’ modules. However, before
we proceed in that direction, we are going to introduce, at this early stage, the
fundamental definition of the local cohomology modules of an R-module M
with respect to a.
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1.2 Local cohomology modules

1.2.1 Definitions. For i € Ny, the i-th right derived functor of I, is denoted by
H! and will be referred to as the i-th local cohomology functor with respect to a.

For an R-module M, we shall refer to H.(M), that is, the result of applying
the functor H. to M, as the i-th local cohomology module of M with respect
to a, and to ['4(M) as the a-torsion submodule of M. We shall say that M is
a-torsion-free precisely when I'y(M) = 0, and that M is a-torsion precisely when
I':(M) = M, that is, if and only if each element of M is annihilated by some
power of a.

It is probably appropriate for us to stress the implications of the above
definition at this point, and list some basic properties of the local cohomology
modules.

1.2.2 Properties of local cohomelogy modules. Let M be an arbitrary R-module.
(i) To calculate H.(M), one proceeds as follows. Take an injective resolution

1-;Od__l,loi,ll_,..._,lii,liﬂ_,...

of M, so that there is an R-homomorphism « : M —> I such that the sequence
O M-S L L,

is exact. Apply the functor 'y to the complex I* to obtain

Cu(d™) . Tadh)
0 ra(lo) T ro(I')

Fa(1i+1) L e e

and take the i-th cohomology module of this complex; the result,
Ker(T'o(d"))/ Im(Ta(d ™)),

which, by a standard fact of homological algebra, is independent (up to R-
isomorphism) of the choice of injective resolution I* of M, is H(M).

(i1) Since Iy is covariant and R-linear, it is automatic that each local
cohomology functor H! (i € Ny) is again covariant and R-linear.

(iii) Since I, is left exact, H? is naturally equivalent to I',. Thus, loosely,
we can use this natural equivalence to identify these two functors.

(iv) The reader should be aware of the long exact sequence of local coho-
mology modules which results from a short exact sequence of R-modules and
R-homomorphisms, and so we spell out the details here.

LetO0— L N M -£5 N — 0 be an exact sequence of R-modules and R-
homomorphisms. Then, for each i € Ny, there is a connecting homomorphism



4 1 The local cohomology functors

H{(N) — H*'(L), and these connecting homomorphisms make the resulting
long sequence

HYS) HY(g)
—_—

0 H)L) HX(M) HY(N)
H! H!
L) —2 s gioan —22 . gy
i Hi(f) . Hi(g) .
— - mw 22 g Hi(N)

HF (L) ——

exact. The reader should also be aware of the ‘natural’ or ‘functorial’ properties
of these long exact sequences: if

f g
0 > L M N 0
' Ju Iv
! g/
0 - L - M N’ 0

is a commutative diagram of R-modules and R-homomorphisms with exact
rows, then, for each i € INy, we not only have a commutative diagram

H{(f) Hi(g)

Hi(L) Hi(M) Hi(N)
Hy(M) Hi(w Hi(v)
. Hi( ) Hig' .
HiL) —L o giory 2, gy

(simply because H! is a functor!), but we also have a commutative diagram

H(N) HI(L)
Hi(v) Hi ()
Hi(N") HIY(L)

in which the horizontal maps are the appropriate connecting homomorphisms.

The following remark will be used frequently in applications. It is an easy
consequence of Exercise 1.1.3 and the definition of local cohomology functors
in 1.2.1.
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1.2.3 Remark. Let b be a second ideal of R such that ,/a = ,/b. Then H] = Hj
for all i € Ny, so that H (M) = H}(M) for each R-module M and all i € No.

The next four exercises might help the reader to consolidate the properties of
local cohomology modules listed in 1.2.2. The first three of these exercises (for
which non-trivial results from commutative algebra about injective dimension
over the relevant rings are very helpful) give a tiny foretaste of results about
the vanishing of local cohomology modules which are central to the subject,
and which will feature prominently later in the book.

1.2.4 Exercise. Show that for every Abelian group (that is, Z-module) G and
for every a € Z, we have Hj (G) =0 for all i > 2.

1.2.5 Exercise. Suppose that (R, m) is a regular local ring of dimension d. Show
that, for each R-module M, we have H:{(M) =0 for all i > d.

1.2.6 Exercise. Suppose that (R, m) is a Gorenstein local ring (see [35, p. 142])
of dimension d. Show that, for each finitely generated R-module M of finite
projective dimension, we have H.(M) =0 for all i > d. (Here is a hint: use the
fact [35, Theorem 18.1] that the injective dimension of R as an R-module is d,
and then use induction on the projective dimension of M.)

The next exercise investigates the behaviour of local cohomology modules
under fraction formation: its results show that, speaking loosely, the local
cohomology functors ‘commute’ with fraction formation. This is a fundamental
fact in the subject; however, we shall actually derive it as an immediate
consequence of a more general result in Chapter 4 concerning the behaviour
of local cohomology under flat base change (and we shall not make use of it
until it has been proved in Chapter 4). Nevertheless, even at this early stage,
its proof should not present much difficulty for a reader familiar with the fact
(proved in 10.1.13) that, if I is an injective R-module and S is a multiplicatively
closed subset of R, then S™!I is an injective ™! R-module.

1.2.7 Exercise. Let M be an R-module and let § be a multiplicatively closed
subset of R. Show that S~{(I'y(M)) = I'ys-1z(S™IM), and that, for all i € N,
there is an isomorphism of S~!R-modules

STHHYM)) = Hig x(S'M).

It is now time for us to relate the a-torsion functor I'y to a functor defined
in terms of direct limits of ‘Hom’ modules. Fundamental to the discussion is
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the natural isomorphism, for an R-module M and n € N,
¢ = durpr : Homp(R/a", M) —> (0 2 o)

for which ¢(f) = f(1 4 a") for all f € Homg(R/a", M). In fact, we are going
to put the various ¢ (n € IN) together to obtain a natural isomorphism

lim Homg(R/a", M) = I".(M), but before we do this it might be helpful to the

neN
reader if we give some general considerations about functors and direct limits,

as the principles involved will be used numerous times in this book.

1.2.8 Remarks. Let (A, <) be a (non-empty) directed partially ordered set, and
suppose that we are given an inverse system of R-modules (W,),en over A,
with constituent R-homomorphisms hg : Wy — Wy (for each (o, ) € A X A
with a > f). Let T : ¥(R) X ¥(R) — ¥(R) be an R-linear functor of two
variables which is contravariant in the first variable and covariant in the
second. (A functor U : €(R) x ¥(R) — %(R) is said to be R-linear precisely
when it is additive and U(rf,g) = rU(f,g) = U(f,rg) for all r € R and all
homomorphisms f,g of R-modules.) We show now how these data give rise to
a covariant, R-linear functor

lim T(W,, .) : 4(R) — %(R).
aEA
Let M,N be R-modules and let f : M — N be an R-homomorphism.
For a,f € A with « > f, the homomorphism h;‘; : W, — W; induces an
R-homomorphism

T(hg, M) : T(Wg, M) — T(W,, M),

and the fact that T is a functor ensures that the T(h;,M) turn the family
(T(Wy, M))sen into a direct system of R-modules and R-homomorphisms over
A. We may therefore form lim T(W,, M). Moreover, again for o, f € A with

aeA
o > B, we have a commutative diagram

! T(h;,M)
T(Wp, M) T(W., M)
T(Wﬂ»f) T(Wa.f)
T(H.N)
T(Wp, N) T(W.,N)

therefore the T(W,, f) (« € A) constitute a morphism of direct systems and so
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induce an R-homomorphism

lim T(W,, f) : lim T(W,, M) —> lim T(W,, N).
a€A acA aEA

It is now straightforward to check that, in this way, lim T(W,, .) becomes

aEeA
a covariant, R-linear functor from #(R) to itself. Observe that, since passage

to direct limits preserves exactness, if T is left exact, then so too is this new
functor.

1.2.9 Examples. (i) Probably the most important examples for us of the ideas of
1.2.8 concern the case where we take for A the set N of positive integers with
its usual ordering and the inverse system (R/a")yen of R-modules under the
natural homomorphisms Ak : R/a® — R/a™ (for n,m € N with n > m) (in such
circumstances, a" < o™, of course). In this way, we obtain covariant, R-linear
functors

lim Homg(R/a", .) and  lim Exti(R/a", .) (i € No)
nelN neN

from %(R) to itself. Of course, the natural equivalence between the left exact
functors Homg and Ext% leads to a natural equivalence between the left exact
functors
lim Homg(R/a" .) and  lim Ext}(R/a% .)
neN neN
which we shall use without further comment.
(ii) Very similar considerations, this time based on the inclusion maps
a" — a™ (for n,m € N with n > m), lead to functors (which are again covariant
and R-linear)
lim Homg(a",.) and  lim Extq(a", .) (i € Ny)
neN nelN

from %(R) to itself, and a natural equivalence between the left exact functors

lim Homg(a"”, .) and lim Ext%(a", ).
neN nelN

These functors will be considered in detail in Chapter 2.

It will be convenient for us to consider situations slightly more general than
that studied in 1.2.9(i) above.

1.2.10 Definition and Example. Let (A, <) be a (non-empty) directed partially
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ordered set. By an inverse family of ideals (of R) over A, we mean a family
(ba)xca of ideals of R such that, whenever («, f) € A x A with « > B, we have
b, = bﬂ.

For example, if

bi2b2...2b,2b,112...

is a descending chain of ideals of R, then (b,),en is an inverse family of ideals
over IN (with its usual ordering). In particular, the family (a”),en is an inverse
family of ideals over N.

Let (b,).ea be an inverse family of ideals of R over A. Then the natural
R-homomorphisms hj : R/b, — R/bg (for a, f € A with « > B) turn (R/by)ser
into an inverse system over A, and so we can apply the ideas of 1.2.8 to produce
covariant, R-linear functors

limHomg(R/b,, -) and  lim Exti(R/by, -) (i € No)
acA aEA

(from ¥(R) to itself), the first two of which are left exact and naturally
equivalent.

1.2.11 Theorem. Let B = (by),eca be an inverse family of ideals of R over A, as
in 1.2.10.
(i) There is a covariant, R-linear functor I'g : ¥(R) — €(R) which is such
that, for an R-module M,
Tu(M) = [ J(0 :u b,
a€A

and, for a homomorphism f : M — N of R-modules, Tg(f) : Tg(M) —>
I'g(N) is just the restriction of f to the submodule T'g(M) of M.
(i1) There is a natural equivalence

¢' (= ¢l) : lim Homg(R/b,, +) —> 'y
zeA
(of functors from €(R) to itself) which is such that, for an R-module
M and o € A, the image under ¢, of the natural image of an h €
Hompg(R/by, M) is h(1 + by). Consequently, Iy is left exact.
(iif) In particular, there is a natural equivalence

¢° (= ¢0) : lim Homg(R/a", .) — T,
neN

which is such that, for an R-module M and n € N, the image under ¢$,
of the natural image of an h € Homg(R/a", M) is h(1 + a").
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Proof. (i) This can be proved by straightforward modification of the ideas of
1.1.1, and so will be left to the reader.

(ii) Let f : M — N be a homomorphism of R-modules. For each o € A,
let ¢p,m : Homgr(R/by, M) —> (0 :pr by) be the R-isomorphism for which
¢p,m(h) = h(1 4 by) for all h € Homp(R/by, M). Let o, f € A with « > f, and
let hf : R/b, — R/bg be as in 1.2.10. Since the diagram

Homg(R /by, M) 4"’;’” (0 5 Bp)

Hom R(h;,M )

PoaM

Homg(R /b, M) - = (0 :m by)

(in which the right hand vertical map is inclusion) commutes, it follows that
there is indeed an R-isomorphism

$i : lim Hompg(R/b,, M) —> T(M) = | J(0 11 bo)
aEA acA

as described in the statement of the theorem. It is easy to check that the
diagram

lim Homg(R/b,, M) ‘2‘ I'y(M)
ach

li_rQ Homg{R/by.f) I's(f)
aEA

lim Homg(R /by, N) — %+ T(N)
aEA

commutes, and the final claim is then immediate from 1.2.10.
(iii) This is now immediate from (ii), since when we apply (ii) to the family

of ideals B := (a")yeN, the functor I'y of (i) is precisely the a-torsion functor
r..o

We commented earlier that it would in time become transparent that I'; is
left exact: we had 1.2.11 in mind when we made that comment.

1.2.12 #Exercise. Provide a proof for part (i) of 1.2.11.
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1.3 Connected sequences of functors

In this section, we are going to use the concepts of ‘connected sequence of
functors’ and ‘strongly connected sequence of functors’. These are explained
on p.212 of Rotman’s book [52]. For the reader’s convenience, we recall here
relevant definitions in the case of negative connected sequences, as we shall be
particularly concerned with this case.

1.3.1 Definition. Let R’ be a commutative ring.

A sequence (T)ien, of covariant functors from %(R) to 4(R’) is said to
be a negative connected sequence (respectively, a negative strongly connected
sequence) if the following conditions are satisfied.

(i) Whenever 0 — L N M %5 N — 0 is an exact sequence in €(R),
there are defined connecting R'-homomorphisms

THN) — THYL) for alliec Ny

such that the long sequence

TO(f) T%g)
0— TO(L) __f__. TO(M) __g_, TO(N)

T'(f) T'(g)

— TY{L) — T'(M) T!(N)

. Ti(f) ) Ti(g) .
s TH(L) — - THM) —— THN)
- . Ti+1( Ly—
is a complex (respectively, is exact).
(i) Whenever

0 L M N > 0
0 L M N’ 0

is a commutative diagram of R-modules and R-homomorphisms with exact
rows, then there is induced, by 4, u and v, a chain map of the long complex of
(1) for the top row into the corresponding long complex for the bottom row.

It might help if we remind the reader of the convention regarding the raising
and lowering of indices in a situation such as that of 1.3.1, under which T’
would be written as T_;: with this convention, (T");»o can be written as (T;);<o.
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We also point out that, if T : (R} — %(R’) is an additive covariant
functor, such as Iy, then its sequence of right derived functors (#'T )ien, is @
negative strongly connected sequence of covariant functors from ¢(R) to ¢(R');
furthermore, if T is left exact, then #°T is naturally equivalent to T. We shall
be concerned so often with left exact, additive, covariant functors that it will
considerably simplify the exposition if we make now the following convention
which will be in force for the rest of the book.

1.3.2 Convention. Whenever R’ is a commutative ring and T : 4(R) — %(R’)
is a covariant, additive functor which is left exact, then we shall identify T
with its 0-th right derived functor Z°T in the natural way. Likewise, we shall
identify Ext% with Hompg in the natural way.

1.3.3 Definition. Let R’ be a commutative ring, and let (T")en, and (U')ien,
be two negative connected sequences of covariant functors from %(R) to #(R’).
A homomorphism ¥ : (T")ien, — (U')ien, of connected sequences is a family
(p")ien, Where, for each i € Ny, v' : T' — U’ is a natural transformation of
functors, and which is such that the following condition is satisfied: whenever
00— L — M — N — 0 is an exact sequence of R-modules and R-
homomorphisms, then, for each i € Ny, the diagram

Ti(N) Ti-H(L)
v vt
Ui(N) Ui+t (L)

(in which the horizontal maps are the appropriate connecting homomorphisms
arising from the connected sequences) commutes.

A homomorphism ¥ = (p)ien, : (TDien, — (U')ien, of connected se-
quences is said to be an isomorphism (of connected sequences) precisely when
v’ : T' - U' is a natural equivalence of functors for each i € Nj.

We hope the reader is sufficiently adept at techniques similar to those on
pp.212-214 of [52] to find the following exercise straightforward; if not, he
or she might like to study Theorem 10 (and its Corollary) of Section 6.5 of
Northeott [43], which together provide a solution.

1.3.4 #Exercise. Let R’ be a commutative ring, and let (T");en, and (U')ien, be
two negative connected sequences of covariant functors from %(R) to €(R’).
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(i) Let p° : T® - U® be a natural transformation of functors. Assume
that
(a) the sequence (T")icn, is strongly connected, and
(b) T(I) =0 for all i € N and all injective R-modules I.

Show that there exist uniquely determined natural transformations ¢’ : T' —
U' (i € N) such that (p')ien, : (T)ieN, — (U')ien, is 2 homomorphism of
connected sequences.

(ii) Let p : T® — U° be a natural equivalence of functors. Assume that
(a) the sequence (T )N, is strongly connected,
(b) the sequence (U')ien, is strongly connected, and
(c) T'(I) = U(I) = 0 for all i € N and all injective R-modules I.

By part (i), there is a unique homomorphism of connected sequences ¥ :=
(Wi, : (TDien, — (U'ien, for which ° = y. Show that ¥ is actually an
isomorphism of connected sequences.

We shall not state explicitly the analogues of 1.3.1, 1.3.3 and 134 for
positive connected sequences, but we warn the reader now that we shall use
such analogues in Chapter 11.

The following consequence of 1.3.4(ii) essentially provides a characterization
of the right derived functors of a left exact, additive, covariant functor from
%(R) to €(R’), where R’ is a commutative ring.

1.3.5 Theorem. Let R’ be a commutative ring, and let T be a left exact, additive,
covariant functor from €(R) to €(R'). Let (T");en, be a negative strongly con-
nected sequence of covariant functors from €(R) to €(R’) such that there exists

a natural equivalence v : T® — T and such that Ti(I) = 0 for all i € N and
all injective R-modules I.
Then there is a unique isomorphism of connected sequences

Y= (wi)ieNo : (Ti)ie]No —> (ﬂiT)ie]No

(of functors from €(R) to €(R’)) such that ° = y. (Of course, we are employing
Convention 1.3.2.) O

The next exercise strengthens Exercise 1.2.7.

1.3.6 Exercise. Let S be a multiplicatively closed subset of R. Show that
(S7H(H(- Miew,  20d  (Hog-g(S7(- ))

are isomorphic connected sequences of functors (from #(R) to ¥(S~!R)).
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1.3.7 Remarks. Let B = (b,),ca be an inverse family of ideals of R over A, as
in 1.2.10.

Let us temporarily write U’ := lim Extg(R/b,, . ) for i € Ny. These functors

aEA
were introduced in 1.2.10. We are going to show now how they fit together into

a negative strongly connected sequence of functors (from ¢(R) to itself).

First of all, whenever 0 — L — M — N — 0 is an exact sequence of R-
modules and R-homomorphisms, there are induced, for each « € A, connecting
homomorphisms

Exth(R/by, N) — Extid}(R/by,, L) (i € Ny)
which make the induced long sequence

0 — Homg(R/b,, L) — Homg(R/by, M) — Homg(R/b,, N)
—  Exth(R/by, L) — Extk(R/by, M) — Extk(R/b,, N)
—  Exth(R/b,, L) — Exti(R/b,, M) —— Exth(R/b,, N)

— Exty(R/b,, L) —

exact. Moreover, these connecting homomorphisms are such that, for o, f € A
with o > f§, the diagram

Extg(R/bg, N)

Extii'(R/bg, L)

Ext;(h;,N) Extj';l(h;,L)

Extk(R/by, N) Extiy '(R/by, L)

(in which the horizontal maps are the appropriate connecting homomorphisms
and hj : R/b, — R/bg is the natural homomorphism) commutes for each
i € Np. It follows that these diagrams induce ‘connecting’ R-homomorphisms

U'(N) = lim Extg(R/by, N) —> U™FY(L) = lim Exti (R /by, L)

aeA a€A
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(for i € Ny); moreover, the fact that passage to direct limits preserves exactness
ensures that the resulting long sequence

0 U%L) U%(M) U%N)
UYL) Uli(M) U'Y(N)
— Ui(L) Ui(M) U(N)

> UH'I(L)

is exact. Next, standard properties of the extension functors ensure that, when-
ever

0 L M > N 0
0 r - M’ N’ 0

Is a commutative diagram of R-modules and R-homomorphisms with exact
rows, then, for all « € A, the diagram

Exty(R/b,, N)

Exty(R/b,, L)

Exth(R/bg,v) Ext 1 (R/b,,A)

Extr(R/by, N')

Extd(R/by, L)

(in which the horizontal maps are the appropriate connecting homomorphisms)
commutes for each i € Ny. It therefore follows that the diagram

lim ExtR(R/b,, N) lim Ext{!(R/b,, L)

aEA aEA
lim Extp(R/bq,) lim Exti!(R/b,,A)
€A acA

lim Extg(R/b,, N') lim Extid(R/b,, L)

acA acA

(in which the horizontal maps are again the appropriate connecting homomor-
phisms) commutes for all i € N.
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We have thus made

<1im Exti(R/by, - ))
ac€A ieNg

into a negative strongly connected sequence of covariant functors from %(R)
to %(R). Since lim Extq(R/by,I) =0 for all i € IN whenever I is an injective

xEA
R-module, it now follows from 1.3.5 that there is a unique isomorphism of
connected sequences

Y= (ipl)ieNo : (IE} EXtIR(R/bM . )) — <@lr%)ieNo
aEA i€eNy

for which ° is the natural equivalence ¢} of 1.2.11(ii); furthermore, both

these connected sequences are isomorphic to the negative (strongly) connected

sequence of functors formed by the right derived functors of

lim Homg(R/b,, .).
aeA

A special case of 1.3.7 describes local cohomology modules as direct limits
of Ext modules. As this description is of crucial importance for our subject, we
state it separately.

1.3.8 Theorem. There is a unique isomorphism of connected sequences (of functors
from €(R) to €(R))

O, = (¢;) : (ﬁm Extk(R/d, .)) =, (H;)
i€eNg — i€Ng
nelN ieNg
which extends the natural equivalence ¢° : lim Homg(R/a", .)iF o of
neN

1.2.11(ii). Consequently, for each R-module M and each i € Ny,

H!(M) = lim ExtR(R/a", M). O
neN

1.3.9 #Exercise. Let M be an R-module, not necessarily finitely generated.
Recall the definition of M-sequence from, for example, [35, p. 123].

(i) Show that, if ay,...,a, and a},a,,...,a, are M-sequences (of elements
of R), then so too is a1d},az,. .., a,.

(ii) Show that, if ay,..., a, is an M-sequence (of elements of R) and hy,..., h,
are positive integers, then a’l”, ...,al is also an M-sequence.
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(ii1) Show that, if ay,...,a, is an M-sequence of elements of a, then we have
Exth(R/a,M) =0foralli=0,...,n—1.

(iv) Show that, if a contains an M-sequence of length n, then H{(M) = 0
foreachi=0,...,n—1.

We shall pursue the ideas of Exercise 1.3.9 later in the book, particularly in
Chapter 6.



